\(r = \frac{3,475,000 \, \text{meters}}{2} = 1,737,500 \, \text{meters}\text{.}\) Do not round yet, as we will keep all significant figures until the end.
\(V = \frac{4}{3} \pi r^{3}\text{.}\)
\(V = \frac{4}{3} \pi (1,737,500 \, \text{meters})^{3}\text{.}\)
\(V = 2.197166906 \times 10^{19} \, \text{meters}^{3}\text{.}\)
Our original value of the diameter has four sig figs, and we are muliplying itself three time in the volume equaiton. So our volume should have four sig figs.\(V = 2.197166906 \times 10^{19} \, \text{meters}^{3}\text{.}\)
Then the volume of the Moon is, \(V = 2.197 \times 10^{19} \, m^3\text{,}\) where \(m\) is the symbol for meters.